

International Journal of Current Research in Biosciences and Plant Biology

Volume 6 • Number 4 (April-2019) • ISSN: 2349-8080 (Online)

Journal homepage: www.ijcrbp.com

Original Research Article

doi: https://doi.org/10.20546/ijcrbp.2019.604.003

The effect of nutrients on the growth of microalgae Haematococcus lacustris (Girod-chantrans) Rostafinski 1875

Dang Mau TRINH^{1*}, Thi Trang NGUYEN¹, Phuoc Kha NGUYEN¹, Nguyen Quynh Anh TRAN² and Chau Tuan VO¹

¹Faculty of Biology and Environmental Sciences, The University of Danang - University of Education, Danang, Vietnam ²Faculty of Chemistry, The University of Danang - University of Education, Danang, Vietnam

*Corresponding author; e-mail: tdmau@ued.udn.vn, trinhdangmau@gmail.com

Article Info

Date of Acceptance: 19 March 2019

Date of Publication: 06 April 2019

Keywords

Astaxanthin Chlorophyta *Haematococcus lacustris* Mass culture Nutrient conditions

ABSTRACT

Haematococcus lacustris is capable to synthesize high content of astaxanthin. Moreover, astaxanthin extracted from *H.lacustris* has been shown to have the highest anti-oxidativeactivity. While the demand for astaxanthin in the world is increasing, the production of astaxanthin from *H. lacustris* is still not easy since they have low growth rate and are very sensitive to changes in culture conditions. This study aimed at investigating the effect of nutritional factors on the growth rate of *H. lacustris* in order to determine the optimal medium for the biomass growth and astaxanthin synthesis of this specy. The results showed that *H.lacustris* grew better in RM culture medium (2.62 \pm 0.17 \times 105 cells/ml) than in BBM culture medium (2.44 \pm 0.10 \times 105 cells/ml). The highest cell density of *H. lacustris* was achieved in the RM medium with NaNO₃ at 1200 mg/l (3.72 \pm 0.022 \times 105 cells/ml), and in the RM medium with K₂HPO₄ at 320 mg/l (3.42 \pm 0.05 \times 105 cells/ml).

Introduction

Astaxanthin (3, 3'- dihydroxy β , β ' carotene - 4,4 - dione) is a keto-carotenoid found in a variety of seafoods such as salmon, shrimp, crabs, fish eggs (Hagen et al., 2002). Its antioxidant activity is 10 times higher than other carotenoids such as β -carotene, zeaxanthin, lutein, canthaxanthin and even 500 times higher than α -tocopherol (Olaizola, 2000). Due to its capacity of blocking certain types of cancer and stimulating the immune system to be superior to β -carotene and α -tocopherol, astaxanthin is increasingly applied in the field of medicine and pharmacy (Nguyen and Nguyen, 2014; Dang et al.,

2010). Furthermore, astaxanthin is widely used in the food industry and aquaculture. For example, it is used as a type of food for salmon to enhance the color of fish meat - an important quality parameter for consumer's choice (Gouveia et al., 2003; Gouveia and Rema, 2005; Torrissen, 2000).

Currently, the demand for astaxanthin in the world is increasing. However, astaxanthin supplies are mainly from chemical synthesis (accounting for 95%). This source of astaxanthin is very expensive, but its biological activity is rather low. *Haematococcus lacustris*, a species of green algae (Chlorophyta), has a high astaxanthin

accumulation capacity, reaching 5-6% its dry weight (Bubrick, 1991; Cifuentes et al., 2003). Moreover, 100% of astaxanthin extracted from *H. lacustris* is in the form of 3S-3'S isomers, which provides the highest levels of antioxidant activity (Lorenz and Cysewsko, 2000). Therefore, the production of astaxanthin from *H. lacustris* has attracted much research interest.

Meanwhile, the production of astaxanthin from H. lacustris is still not easy since they have a low growth rate and are susceptible to changes in culture conditions. When cultured under appropriate conditions, most of the microalgal cells remain in vegetative state, which does not accumulate astaxanthin or accumulate with a low content. Under stress conditions, the algae cell will convert to a nonmoving cyst, and they can accumulate large amounts of astaxanthin when appropriately stimulated. Therefore, the conditions for algae cell to grow and synthesize astaxanthin are very different. This study aimed at investigating the effect of nutritional factors on the growth rate of H. lacustris in order to determine the optimal medium for the biomass growth and astaxanthin synthesis of this species.

Materials and methods

H. lacustris was acquired from the Faculty of Biotechnology, Vietnam National University of Agriculture. The stock culture and the inoculum were grown in the Bold Basal Medium (BBM) (Andersen, 2005). The inoculum was grown aseptically in a 700 ml flasks containing 400 ml of BBM medium with a stable temperature of 25 °C, 16 h light:8 h dark cycle of 30 μmol photon m⁻² s⁻¹ white fluorescent light.

Investigate the effect of Sodium nitrate concentration on the growth of *H. lacustris*

The experiment was carried out with an initial algae density of 1.07×10^4 cells / ml inserted into a 50ml BBM and RM culture media, a luminous intensity of 30 µmol photon m⁻² s⁻¹, at a stable temperature of 25 ± 0.5 °C on a 16:8 dark-light cycle. The growth of *H. lacustris* was tested on two mediums BBM and RM, which had different concentrations of Sodium nitrate (Table 1). The growth rate of *H. lacustris* was assessed at a frequency of 2 days.

Table 1. Experimental design to investigate the effect of sodium nitrate concentration on the growth of *H. lacustris*.

RM culture medium		BBM culture medium	
NaNO ₃ concentration	Number of sample	NaNO ₃ concentration	Number of sample
300 mg/l	3 bottles	250 mg/l	3 bottles
600 mg/l	3 bottles	500 mg/l	3 bottles
900 mg/l	3 bottles	750 mg/l	3 bottles
1200 mg/l	3 bottles	1000 mg/l	3 bottles
1500 mg/l	3 bottles	1250 mg/l	3 bottles
1800 mg/l	3 bottles	1500 mg/l	3 bottles

Investigate the effect of dipotassium phosphate concentration on the growth of *H. lacustris*

Experimental conditions to assess the effect of

dipotassium phosphate concentration on the growth of *H. lacustris* were designed the same as those for sodium nitrate. The only difference was that the BBM and RM media had different concentrations of dipotassium phosphate).

Table 2. Experimental design to investigate the effect of dipotassium phosphate concentration on the growth of *H. lacustris*.

RM culture medium		BBM culture medium	
K ₂ HPO ₄	Number of sample	K ₂ HPO ₄ concentration	Number of sample
concentration			
80 mg/l	3 bottles	100 mg/l	3 bottles
160 mg/l	3 bottles	200 mg/l	3 bottles
240 mg/l	3 bottles	300 mg/l	3 bottles
320 mg/l	3 bottles	400 mg/l	3 bottles
400 mg/l	3 bottles	500 mg/l	3 bottles
480 mg/l	3 bottles	600 mg/l	3 bottles

Determination of growth rate

Cell density was counted under the microscope by the Neubauer counting chamber, and calculated according to the following formula:

$$D = \frac{A}{X} \times 10^4$$

Where:

D: Cell concentration (cell/ml),

A: Total number of cells counted (cell),

X: Number of squares.

Statistical analyses

Data analysis was performed on the Microsoft Excel 2013 software. The statistical significance of the differences between groups was assessed by one-factor analysis of variance (Anova One way).

Results and discussion

The effect of Sodium nitrate concentration on the growth of *H. lacustris*

Nitrate concentration was identified as the best source of nitrogen for the growth of microalgae cell (Yuan and Chen, 2001). Furthermore, it has the ability to prolong the vegetative state of microalgae (Ranjbar et al., 2008). That is the reason why we conducted the experiments to investigate the effect of nitrate concentration on the growth rate of H. lacustris in BBM and RM media. In RM medium. the results showed that at a concentration of 1200 mg/L NaNO₃, the highest cell density was recorded after 18 days culture with $3.72 \pm 0.022 \times 10^5$ cells/mL, with a peak growth rate of 0.2 µ. The highest cell densities at NaNO₃ concentrations of 1800 mg/L, 1500 mg/L, 900 mg/L, 600 mg/L, and 300 mg/L were $3.48 \pm 0.051 \times 10^{5}$, $3.27 \pm 0.083 \times 10^{5}$ 10^5 , $2.86 \pm 0.230 \times 10^5$, $2.70 \pm 0.055 \times 10^5$, and $2.62 \pm 0.017 \times 10^5$ cells/mL, respectively (Fig. 1). According to Thom et al. (2013), the algae cell reached at the highest density $(1.74 \times 10^6 \text{ cells/mL})$ at the NaNO₃ concentration of 876 mg/L. However, in Thom's study, the time for the algae to reach the highest density was 36 days and the peak growth rate was 0.03 µ. The highest density in this study is lower than in other studies due to the initial algal cell density (0.1 \times 10⁵ cell/mL in this study compared to 0.5×10^5 cell/mL to 1.74×10^6 cell/mL in other studies). However, the growth rate peaked in the survey is higher (0.2 μ compared with 0.03 μ compared with other studies). Furthermore, the initial stocking density may be one of the factors affecting the growth of *H. lacustris*.

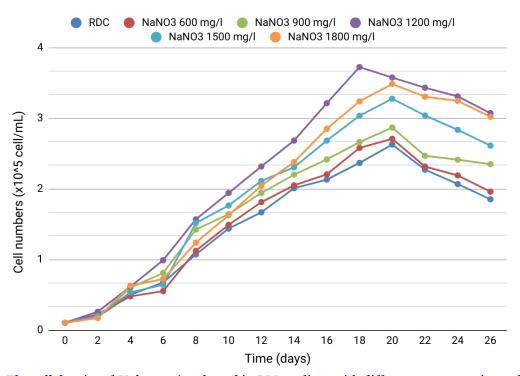


Fig. 1: The cell density of *H. lacustris* cultured in RM medium with different concentrations of NaNO₃.

In BBM medium, the highest cell density of the algae was obtained at NaNO₃ concentration of 1000 mg/L with $3.46 \pm 0.030 \times 10^5$ cells/mL at day 20th, with the peak growth rate of 0,168 μ . At NaNO₃ concentrations of 1500 mg/L, 1250 mg/L,

750 mg/L, 500g/ml and 250 mg/L (control medium), the highest density of microalgae cells were 3.31 \pm 0.07 \times 10⁵, 3.14 \pm 0.04 \times 10⁵, 2.75 \pm 0.2 \times 10⁵, 2.59 \pm 0.06 \times 10⁵, 2.44 \pm 0.1 \times 10⁵ cells/mL (Fig. 2).

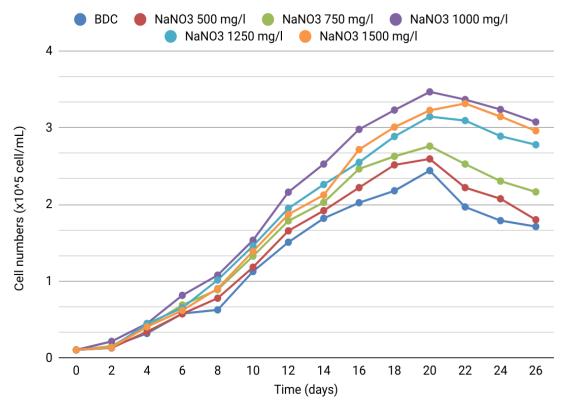


Fig. 2: The cell density of H. lacustris cultured in BBM medium with different concentrations of NaNO₃.

All treatments in both BBM and RM media had a positive effect on the increase of *H. lacustris* cell density in comparison to the control medium. However, it should be noted that algae cell density did not increase linearly with the increase of NaNO₃ concentration. The highest density in RM media at concentrations of 1400 mg/L and 1800 mg/L $(3.27 \pm 0.083 \times 10^{5} \text{ cells/mL} \text{ and } 3.48 \pm 0.051 \times 10^{15} \text{ cells/mL})$ 105 cells/mL, respectively) were lower than that at NaNO₃ concentrations of 1200 mg/L (3.72 ± 0.022 × 10⁵ cells/mL). Similarly, in BBM medium, the highest cell density (3.46 \pm 0.03 \times 105 cells/mL) was obtained at 1000 mg/L of NaNO₃ concentration, not at the higher concentrations of NaNO3 (1250 mg/L or 1500 mg/L). Moreover, the results also showed that increasing nitrogen concentration in the RM medium gave better results than in the BBM

medium, with the growth rate of 0.2 μ (RM) in comparison to 0.168 μ (BBM). This might be explained by the difference in the nitrogen source in the two media. The RM medium contained two nitrogen sources for microalgae growth, that are NO_3^- and $N-NH_4^+$; while the BBM medium had only one nitrogen supply, which is NO_3^- .

The effect of dipotassium phosphate concentration on the growth of *H. lacustris*

Phosphorus is one of the main sources of nutrients for the growth and development of microalgae. It is necessary to investigate exactly the content of phosphorus giving the best growth and development for microalgae. This experiment examined the growth of *H. lacustris* in RM and BBM media at different K₂HPO₄

concentration. In RM medium, the best result was obtained at the K_2HPO_4 concentration of 320 mg/L. At this level of concentration, cell density of the microalgae was highest with 3.42 \pm 0.05 \times 10 5 cells/mL at day 22 $^{\rm nd}$, and the peak growth rate was 0.15 μ . At K_2HPO_4 concentrations of 480 mg/L and 400 mg/L, the highest densities were

3.12 \pm 0.02 \times 10⁵ and 2.94 \pm 0.04 \times 10⁵ cells/mL, respectively, at day 22nd. For the remaining concentrations [240mg/l, 160 mg/l and control medium (RDC)], the highest cell densities were 2.86 \pm 0.13 \times 10⁵, 2.76 \pm 0.03 \times 10⁵, 2.62 \pm 0.02 \times 10⁵ cells/mL, and recorded on day 20th (Fig. 3).

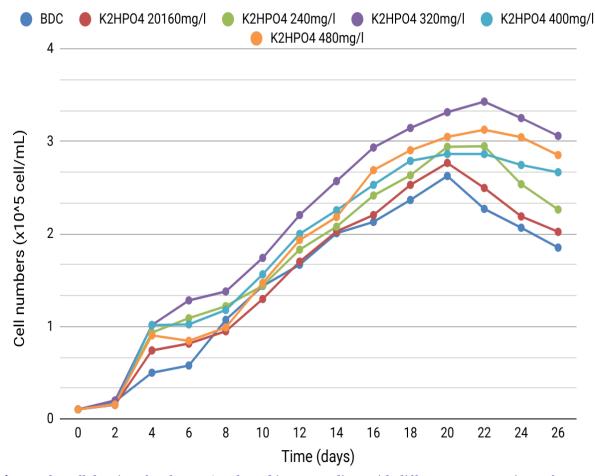


Fig. 3: The cell density of *H. lacustris* cultured in RM medium with different concentrations of K₂HPO₄.

Experimental results on BBM medium showed that concentration of K_2HPO_4 at 400 mg/L gave the highest increase in H. lacustris cell density compared with other concentrations. At this concentration level, H. lacustris had the highest cell density of $3.11 \pm 0.4 \times 10^5$ cells/mL on day 22^{nd} , with the peak growth rate of 0.14μ . This cell density level was 27% higher than that in the control medium $(2.44 \pm 0.14 \times 10^5 \text{ cells/mL})$, and also higher than that $(2.54 \pm 0.023 \times 10^5, 2.59 \pm 0.08 \times 10^5, 2.77 \pm 0.06 \times 10^5, 2.91 \pm 0.03 \times 10^5 \text{ cells/mL})$ in other K_2HPO_4 concentrations (375 mg/L, 475 mg/L, 675 mg/L, and 775 mg/L) (Fig. 4).

cell The initial density at different concentrations of K₂HPO₄ on different media affected the growth of microalgae H. lacustris. However, cell density did not increase linearly with the increase of K₂HPO₄ concentrations in the media. The growth of microalgae *H. lacustris* was restricted when K₂HPO₄ concentration was higher than 320 mg/L in RM medium, and 400 mg/L in BBM medium. Besides, the growth of H. lacustris in different K₂HPO₄ concentration in RM medium was better than in BBM medium (the peak growth rate 0.15 μ in comparison with 0.14 μ).

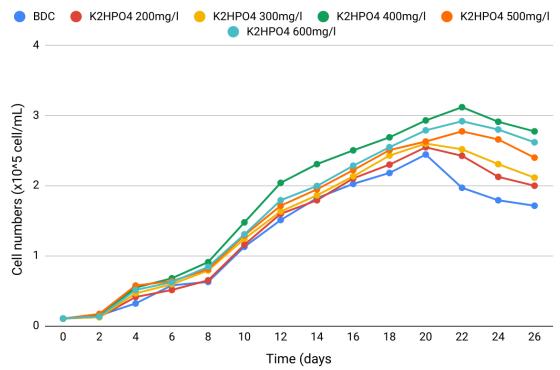


Fig. 4: The cell density of *H. lacustris* cultured in BBM medium with different concentrations of K₂HPO₄.

Conclusion

The results showed that RM culture media was more suitable than BBM media for the growth and development of the microalgae H. lacustris. In the RM media, H. lacustris gave the best growth at NaNO₃ concentration 1200 mg/L, with cell density up to 3.72×10^5 cells/mL, which was 4.2 times higher than the control medium (2.62×10^5) cells/mL). The concentration of K₂HPO₄ at 320 mg/L was the best for the growth of the microalgae was best. At this level of concentration, the highest density of *H. lacustris* reached 3.42 \pm 0.05 \times 10⁵ cells/mL. However, in this study, we only assessed independent effects of nitrogen phosphorus on the growth of *H. lacustris*. In fact, the appropriate ratio of nitrogen and phosphorus is an important factor influencing the growth and development of H. lacustris. Therefore, more detailed surveys on the effect of nitrogen and phosphorus ratios in culture media on the growth and development of *H. lacustris* should be implemented in near future.

Conflict of interest statement

Authors declare that they have no conflict of interest.

Acknowledgement

This study was supported by Research and teaching group on Environment and Biological Resources (DN-EBR), Da Nang University; Applied Biology Research Group (ABR), Faculty of Biology and Environmental Science, The University of Science and Education, Da Nang University.

References

Andersen, R.A. (Ed.), 2005. Algal Culturing Techniques. Elsevier.

Bubrick, P., 1991. Production of astaxanthin from *Haematococcus*. Bioresour. Technol. 38(2-3), 237-239.

Cifuentes, A.S., Gonzalez, M.A., Vargas, S., Hoeneisen, M., Gonzalez, N., 2003. Optimization of biomass, total carotenoids and astaxanthin production in *Haematococcus pluvialis* Flotow strain Steptoe (Nevada, USA) under laboratory conditions. Biol. Res. 36(3-4), 343-357.

Dang D. H., Dinh D. H., Nguyen T. T., Anh, H. T. L., 2010. Selection of optimal environment for cultivation of astaxanthin-rich *Haematococcus pluvialis*. Acad. J. Biol. 32(2), 43-53. (Vietnamese).

- Gouveia, L., Rema, P., 2005. Effect of microalgal biomass concentration and temperature on ornamental goldfish (*Carassius auratus*) skin pigmentation. Aquacult Nutr. 11(1), 19-23.
- Gouveia, L., Rema, P., Pereira, O., Empis, J., 2003. Colouring ornamental fish (*Cyprinus carpio* and *Carassius auratus*) with microalgal biomass. Aquacult. Nutr. 9(2), 123-129.
- Hagen, C., Siegmund, S., Braune, W., 2002. Ultrastructural and chemical changes in the cell wall of *Haematococcus pluvialis* (Volvocales, Chlorophyta) during aplanospore formation. Eur. J. Phycol. 37(2), 217-226.
- Lorenz, R.T., Cysewski, G.R., 2000. Commercial potential for *Haematococcus* microalgae as a natural source of astaxanthin. Trend. Biotechnol. 18(4), 160-167.
- Nguyen D. B., Nguyen T. T., 2014. Microalgae biotechnology: Prospects and challenges. Vietnam Sci. Technol. J. (8/651), 11. (Vietnamese)
- Olaizola, M., 2000. Commercial production of astaxanthin from *Haematococcus pluvialis*

- using 25,000-liter outdoor photobioreactors. J. Appl. Phycol. 12(3-5), 499-506.
- Ranjbar, R., Inoue, R., Shiraishi, H., Katsuda, T., Katoh, S., 2008. High efficiency production of astaxanthin by autotrophic cultivation of *Haematococcus pluvialis* in a bubble column photobioreactor. Biochem. Eng. J. 39(3), 575-580.
- Torrissen, O. J., 2000. Dietary delivery of carotenoids. In: Antioxidants in Muscle Foods: Nutritional Strategies to Improve Quality (Eds.: Decker, Eric, Faustman, Cameron, Lopez, B., Clemente, J.). John Wiley & Sons, New York. 281p.
- Thom, L. T., Mai, D. N., Anh, H. T. L., Thu, N. T. H., Ha, N. C., Hong, D. D., 2013. Effect of nitrate concentration on growth of green microalga *Haematococcus pluvialis* under laboratory conditions. Acad. J. Biol. 35(2), 219-226.
- Yuan, J.P., Chen, F., 2001. Kinetics for the reversible isomerization reaction of transastaxanthin. Food Chem. 73(2), 131-137.

How to cite this article:

Trinh, D. M., Nguyen, T. T., Nguyen, P. K., Tran, N. Q. A., Vo, C. T., 2019. The effect of nutrients on the growth of microalgae *Haematococcus lacustris* (Girod-chantrans) Rostafinski 1875. Int. J. Curr. Res. Biosci. Plant Biol. 6(4), 17-23. **doi:** https://doi.org/10.20546/ijcrbp.2019.604.003